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Summary 
A theory of fringe localization in rapid-double-exposure, diffuse-illumination holographic 

interferometry is developed herein. A general theory of diffuse-illumination interferometry is 
the basis for  a model to locate  the interference fringes formed by arbitrary shock waves and, 
specifically, the shock waves in a rotating machine. The theory is then applied to the 
interpretation of holograms of the flow in a  transonic axial-flow compressor rotor.  The theory 
and laser anemometer measurements from the same compressor are used to compute the fringe 
localization error.  The  computed localization error is found to agree well with the measured 
localization error. Hence, the  theory  should serve as an  adequate basis for designing 
measurement systems and experiments that use rapid-double-exposure holography. 

In particular, it is shown how the  curvature, positional variation in strength,  and 
orientation of the shock wave relative to the viewing direction of the shock wave are all required 
to determine the localization error  and to minimize it. 

To accurately locate a shock wave, it is suggested that  the view not deviate from tangency 
at the shock surface by more than 30". 

Introduction 
Holography  and laser anemometry have been  used to study  the flow in a  rotating  transonic 

compressor stage at  the Lewis Research Center. Both methods are nonintrusive optical 
techniques specifically intended for use  with  flows  in turbomachinery blade passages. 
Holography provides an instantaneous, entire field recording of the flow field while laser 
anemometry provides only a point measurement of the velocity. The objective is to provide 
detailed measurements within blade passages that  are intended to verify  new computational 
methods for compressor design and analysis (ref. 1). 

As part of the  program of holographic measurements to achieve this objective, over 200 
double-exposure holograms of the flow between the blades of a transonic compressor rotor 
were recorded. The compressor operated between choke and stall at 75 to 100 percent of design 
speed. The method used for these measurements was rapid-doubleexposure, diffuse- 
illumination, holographic interferometry. (See e.g., ref. 2). 

Although the reconstructed holographic images contained the expected three-dimensional 
interference fringe pattern, it was obvious from the laster anemometer data  that the fringes did 
not necessarily relate in a simple way to the shock waves creating them.  In some cases the 
interference fringes coincided with the shock wave, but in others a fringe was substantially 
displaced from  the shock wave. In the extreme, a fringe could not be associated with any finite 
location in space. 

It was clear from  the results that neither the models of double-exposure holography nor  the 
analysis procedures for  that technique were adequately developed. On the  other  hand,  the 
simultaneous existence of holographic and anemometer data  for comparison presented a 
unique opportunity to develop an accurate  theory relating the shock and fringe locations. 

In this paper, a theory of interference-fringe localization in rapid-double-exposure, diffuse 
illumination,  holographic  interferometry of moving shock waves  is developed. The theory is 
compared with laser anemometer and holographic data  from a transonic compressor rotor. 
Guidelines for  the correct use of double-exposure holography are presented. 

The main body of this  report consists of three main sections. The first two develop the 
theory of fringe localization as it applies to rapid-double-exposure holography of shock waves. 
The  third section compares  the results of that theory with holographic and laser anemometer 
measurements from  a  rotating  transonic compressor rotor.  In  the  main body of the  report, the 
principles of diffuse illumination interferometry are applied only to shock waves, and the case 
of a shock wave in a compressor rotor is emphasized. 



The details necessary to develop the  theory  and to compare  the  theory with the 
measurements are left to the appendices. A general theory of diffuse illumination holographic 
interferometry is presented in appendix A. This theory makes liberal use of the  presentation in 
Vest's book,  Holographic  Interferometry (ref. 3), with emphasis on those aspects of the theory 
that  apply to shock-wave visualization. It is recommended that a reader not familiar with the 
theory of diffuse illumination interferometry read this appendix first, since some essential 
assumptions are discussed therein. 

Because the wavelengths of the lasers used to record the hologram and to reconstruct the 
scene may be different,  the effect of a wavelength change in reconstruction is discussed in 
appendix B. 

Before developing the  theory,  the background of double-exposure holography is  next 
summarized in more  detail. 

Background 
Rapid-double-pulse, or rapid-double-exposure, holography was certainly appropriately 

named by Heflinger and Wuerker (ref. 2). The  name refers to a  doubly exposed hologram 
recorded with a very short time between exposures. The method is used for three-dimensional 
flow visualization of shock waves. The idea is straightforward  and simple when applied to 
recording holograms in rotating compressor and  fan stages. 

As shown schematically in figure 1, diffused light from  a pulsed laser is transmitted 
through  a large window located upstream of a compressor stage. The light passes between the 
blades of the compressor and exits through a small window located over the blade tips. The 
light then falls on a high-resolution photographic  plate, or film, which is also exposed to a 
reference beam. The hologram is recorded while the machine is rotating. (See ref. 4 for a 
general discussion of holography.) After the compressor has rotated  through a small angle (of 
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Figure 1. - Holography in single-stage compressor test facility. 
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the order of 0.01 rad.), a second hologram is recorded on the  same film. When the double 
image is reconstructed, interference fringes are  formed because of the slight difference in the 
refractive index fields between the two exposures. Provided that  the windows and other optical 
components have not moved between the two exposures, the fringes are  due entirely to the 
slight shift in the  interblade flow field. 

Instructions for building a system to record rapid-double-pulse holograms in rotating 
machines appear in other  publications,  and can be summarized quite briefly. First,  the object is 
illuminated and  the hologram is recorded in a so-called holocamera configuration (refs. 2 
and 5) that compensates for  the possible lower coherence property of pulsed solid-state lasers 
(ref. 6). Simply put,  the  holocamera, such as the  one shown schematically in €igure 2, is a form 
of interferometer. Reference-beam and object-beam rays from  the same point on the 
holocamera beam splitter are  routed  through their respective optical  trains so that they are 
brought back together at the same point on the hologram film. Care is taken to ensure that an 
object-beam-reference-beam ray pair travels about  the same optical distance  before intersecting 
at the film. (Optical distance is defined to be jnds where s is the geometrical path length of a 
light ray  and n is the refractive index along the ray trace.) 

In the compressor application, the object beam polarization is tailored to avoid showing 
fringes induced by stresses in the windows. One  approach is to select a diffuser  that completely 
depolarizes the object beam (ref. 7). In  addition,  a timing system must be constructed to fire the 
laser at the  instant  the  blade passage of interest appears in a chosen location.  One example of a 
timing system  is the general purpose electronic shaft angle encoder for rotating machines 
described in reference 8. 

The laser must produce pulse pairs  for  the double exposure. Most commerically available 
pused-ruby and neodynium YAG lasers are sold with this feature as well as with 
synchronization inputs to be  used  with an external clock. 

Since test-section windows do  not, in principle, move between exposures, they do not 
produce fringes, and their quality merely affects the quality of the  hologram image. The setup 
described in reference 2 uses molded windows. At Lewis in the single-stage compressor test 
facility, the large window (depicted in fig. 1)  is machined from plexiglass. The small window 
over the blade tips is machined from polysulfone a material that  can withstand the higher 
temperature over the blades. Television quality resolution is obtained  through  the small 
window. 

As a final step,  a plate magazine or film transport may be required if a number of 
holograms are to be recorded without access to the test area. A glass-plate magazine is described 
in reference 2. At Lewis a 105-millimeter film transport is used to hold and  to advance the 
holographic film. 

Although each application of rapid-double exposure holography will require a different 
setup,  the essential features of most systems have been outlined above.  In figures 3(a) and (b) 
two photographs of the  holography  setup used in the single-stage compressor rig at Lewis are 
shown. The design of that holography system was based on the  information of reference 2. 

When a rapid-double-exposure hologram of a compressor flow containing shock waves  is 
recorded,  the interference fringes have a remarkable  property. They appear to  be located on,  or 
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Figure 2 - Diagram of  object and  reference-ray  path 
matching in holocamera  configuration. 
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(a) Holocamera assembly. 

(b) From background to foreground, holocamera assembly, small window. and  film magazine. 

Figure 3. - Experimental setup. 

localized on, surfaces. These surfaces look like shock waves. A photograph of such a fringe 
pattern for a Lewis compressor near stall is shown in figure 4. Indeed, it is easy  while  viewing 
the reconstructed image to make a pencil tip coincide with the fringe location.  From a particular 
viewing direction, the surface  can  be  traced either by measuring  its  location 
photogrammetrically with an XYZ translation stage and  a self-illuminated pointer or by tracing 
the  apparent fringe boundaries with glue filaments (ref. 2). 
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Figure 4. - interference  fringe  due  to bow and passage shock waves in a transonic compressor  rotor. 

Unfortunately, in spite of its suggestive appearance, a fringe does not necessarily coincide 
with the shock wave that created it.  In  fact, if a plane shock wave having uniform strength is 
moved arbitrarily between exposures and  the reconstructed image is  viewed from  an  arbitrary 
vantage point,  the fringe can  appear to be localized anywhere between a  true position of the 
shock wave and infinity. 

Clearly, the difference between the fringe and shock location, which  will  be  called fringe- 
localization error, compromises the usefulness of rapid-double-exposure holographic 
interferometry. For example, in choosing a vantage point for recording a hologram of a shock 
wave, one is usually severely constrained by the geometry of the equipment used to generate the 
shock wave. We show later in this report  that  a relatively steep view (one that approaches 
tangency to the shock wave surface) minimizes the localization error.  A  fan with a large ratio of 
blade-tip radius to hub radius such as the fan  reported in reference 2 allows a more tangent view 
than  a compressor with a small radius  ratio such as the one  operated in the Lewis single-stage 
compressor test facility. If a steep view  is not possible, then  a designer of a rapid-double- 
exposure holography system for a compressor may decide that the technique is not useful. 

However, for unsteady flows the  instantaneous recording capability of holography is 
irreplaceable. At the same time there  are flow situations such as through cascades and  fans 
having large span where a selection of  views  is available. 

To caution against the indiscriminant use of rapid-double-exposure holography and  to 
provide design assistance where double-exposure holography is the only alternative or where a 
broad selection of views  is available, a  theory of fringe localization is developed. The theory is 
compared with laser anemometer and holographic data recorded in the single-stage compressor 
rig at Lewis. 

Rapid-Double-Exposure  Holography of a  Shock  Wave 
Experiencing  Arbitrary Motion Between  Exposures 

In this section, the  theory of rapid-double-exposure holography developed in appendix A is 
applied to a generally curved shock wave whose strength depends on position. The conditions 
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for good fringe localization (sharply defined fringes) and accurate localization (fringes located 
near one of the  two positions of the shock wave) are determined. 

General Localization Condition 

If the change in refractive index is given  by the  function f(r) where r =(x,y,z) (see fig. 5 )  
and if the reconstructed image is  viewed from a fixed direction defined by the  unit vector k 
directed to the center of the viewing aperture,  then  the interference finge(s) appears to be 
located at positions rf =(X, Y, 2) determined by equations (1) from appendix A. Note  that all 
symbols are also defined in Appendix C .  The localization equations as derived in appendix A 
are 

jm -m VfKxzdz  jm ?f-Kyzdz  
z= 

jym f .Vfdz jym P V f  dz 

Z =  --OD 

where the  substitution 

is made before integration.  The vectors K ,  and K, ,  are defined by the  equations 

The vector K ,  is perpendicular to the viewing direction and is in  the  plane  containing  the 
viewing vector k and  the x axis. The vector K , ,  is perpendicular to the viewing direction and is in 
the plane containing the viewing vector k and  the y axis. 

The limits of the integrals in equations (1) are (- w,w) subject to the  assumption and 
realization that f(r) will be nonzero in a limited region. Each of the two equations (1) defines a 
surface where Z can be  expressed as a  function of X and Y. The two equations together 
generally define a curved line. Hence, the fringes localize in the neighborhood of that line. The 
actual region where the fringes have high visibility is determined by the modified depth-of-field 
described in appendix A. 

One of the two equations (1) may be satisfied only in the trivial sense; that is, one of the 

Shock I position 1 
position 2, I \ I  

r S h W k  

Figure 5. - Reference  plane  and  vectors  used to apply f r inge 
localization  theory to interpret  interference  fr inges asso- 
ciated  with  shock waves in compressor  rotor. 
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two localization equations may be satisfied for all positions rf. This  condition will occur if the 
change in phase 

AO= e 1 f(r)- dz 00 

h --OD k, 

along a ray passing through  the  arbitrary point rf and  the  point 

on the reference plane (fig. 5 )  depends not at all or only weakly on x or y. If A0 depends weakly 
on x, then the first of equations (1) is satisfied for all rf. The expression weak dependence rather 
than no dependence is emphasized since the nonzero depth of field of the viewing  system  will 
prevent a slowly varying derivative of AO from establishing localization. This conclusion can  be 
drawn by examining equation (A13) in appendix A. 

In  fact,  for visualizing a shock wave, it is desirable that only one of the two equations (1) 
apply. Then localization will occur on a surface.  In some cases, this surface can coincide with 
the shock wave. 

Contributions to the  Change  in  Refractive  Index 

It will be assumed that a view can be found where the shock wave of interest dominates the 
integrals. There is a possibility that  can invalidate this assumption. This possibility consists of a 
flow features that  contribute smaller values  of vf than  the shock wave, but  contribute over 
larger distances. 

Representation of the  Shock  Wave 

Because a shock wave  is  very thin, the change in refractive index across the shock can be 
represented very nearly by a step  function.  The location of this step is a generally curved surface 
given by an  equation having the general form 

There are several functions that pass to the step function in the limit  of  decreasing  width (ref. 9). 
The refractive-index function N that will be  used to represent a shock wave  is  given  by the 
equation 

In  equation (3), the  number a is made  arbitrarily large. Then, when g(r)<O, N approaches 
NO - (AN/2)  in a very short distance. When g(r) > 0, N approaches NO + (AN/2)  in  very short 
distance. When g(r) = 0, N=No. 

Not only does g(r) have an arbitrary  shape,  both NO and  ANmay be functions of position. 
However, the  contribution of No to any derivatives of Nwill be negligible  when compared with 
the  contribution of 

The value of AN will  be called the shock strength. 

exposures is derived next. 
The mathematical representation of the motion of the shock wave  between the two 
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Transformation of the Shock  Wave 

Between exposures, a  shock wave can  be rigidly translated,  rotated,  or  deformed. In this 
paper,  only  translation  and  rotation  are considered. The case of rigid translation  and  rotation 
applies to steady flows in  rotating  machines.  The  shape  of  the  shock wave might  change  in 
unsteady flows. 

In the steady-flow case considered in this report,  the shock wave  is pictured as being rigidly 
attached to  a  coordinate system. At  the first exposure  the  coordinate system  is chosen to be the 
reference frame. Between the first exposure and  the second exposure, the  coordinate system 
undergoes a rigid translation  and  rotation.  The  shock wave has the same  equation  in  the 
transformed coordinates at  the second  exposure as  it has  in  the reference frame  at the first 
exposure. That is, 

where r =(x,y,z) represents the coordinates in the reference frame  and rt =(xt,yt,zt) represents 
the coordinates in the  transformed system. Hence, to  obtain  the  equation of  the  shock wave at 
the second exposure, the vector rt in g(rt) = O  is simply  transformed in terms  of r. The 
transformation  of coordinates is  given  by the expression 

where dyadic notation is used. 

transformed system measured relative to  the axes of  the reference frame,  that is, 
In equation (4) the  matrix F is the 3 by 3 matrix  of  the direction cosines of  the axes of the 

( ) 
cos a x  cos ay cos CYZ 

cos yx cos yy cos yz 
r=  cos px cos pu cos pz 

The vector d =(dx,dy,dz) defines the  translation. 

The Difference in  Refractive  Index  and its Gradient 

From  equation (3), the difference in refractive index f(r) between the first and second 
exposures  is  given  by the  equation 

where rt is determined  from  equation (4). 
In equation ( 5 )  both NO and m a r e  functions of position. However, the derivatives of NO 

and AN are small in comparison with the derivatives of tan - [ag] and  are ignored. 
Differentiating equation (5 )  subject to this assumption and applying  equation (4), the gradient 
Vf is  given  by - 
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where vt implies differentiation with  respect to  the coordinates in the  transformed system. 

It is convenient and correct to replace it with the  Dirac delta function: 
At this stage, it  is convenient to  note  that a/(l +a2g2(r)) is a very narrow function of g(r). 

Equation (6) becomes 

Localization  Conditions for a  Shock Wave 

The  procedure for determining  the localization conditions for  the  shock wave  is  easily 
stated: Equation (4) is substituted into equation (7); the relationship r = rf + k(Z- Z)/k ,  is 
substituted into  equations (1); the integrals in equations (1) are then evaluated. Substituting 
equation (7) into equations (l), the integrals in equations (1) assume  the  form 

Some additional variables are defined and explained at this point. Let R be that value of r 
where the viewing  axis intersects the first position of the  shock wave. Then g(R) = 0. Let Z be 
the corresponding value of z. 

Let R' be the value of r where the viewing axis intersects the second position of the  shock 
wave.  Let Zt be the  corresponding value of z. If we define 

then Zt is obtained from g(Rt) = 0. These quantities are depicted in figure 5 .  The vectors R and 
R' are given  by 

R=rf+k(T) 2-2 
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R'=rf+k(,) Z , - z  

Using these definitions,  the localization conditions are easily written out. 

z= 

Symbols such as Vtg(Rt) and Vg(R) mean that  the  differentiations are first performed with 
respect to rt and r and  then  the explicit  values of R and R, are substituted. To repeat, Z is 
calculated from g(R) = O  and Zt  is calculated from g(Rt) = O .  Equations (1 1) are implicit 
solutions for the axial localization coordinate Z;  hence, additional  manipulation is required to 
obtain 2 as a function of X ,  Y.  

In the next section, the requirements for  good localization are discussed qualitatively. 

Requirements for Localization 

Good localization (sharply defined fringes) will occur when conditions (a), (b), and (c) 
below are satisfied. Accurate localization (coincidence of interference fringes and shock 
surface) is promoted by all the conditions (a), (b), (c), and (d). 

(a) The view represented by the vector k is tangential to the  shock wave  (steep  view). 
(b) The strength of the shock wave AN(R) varies rapidly enough with position. 
(c) The shock wave has sufficient curvature: g(r) contains nonlinear terms in r. 
(d) The vector Kx or K, ,  is tangential to the shock wave. 

The condition for good localization can be deduced qualitatively by using the results derived 
above and  the results from appendix A. 

Recall that  the most general condition for localization,  obtained  from  equations (All), 
(A17), and (A19), is given  by 

V,AB= 

For localization, the phase change AB must be stationary with respect to  at least one of the 
components of the position vector rr in the reference plane. At the same time, however, the 
phase change AB must depend on  that variable if the localization is to be nontrivial. In fact, 
from  equation (A13), the larger that V,AB is at points away from  optimum localization, the 
better localization will be. 

Consider only the first component i. V,AB, since the  treatment of the second component is 
identical. Following the same procedure used to derive equations (1) and, thereby, equations 
(1 l), it can be shown that 
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Note  that Vtg(Rt)-r  can be written as Vg(Rt) so that  equation (12)  can be written as 

Equation (13)  is composed of pairs of terms. The first term in a pair is evaluated at the 
intersection of the viewing axis with the second position of the shock wave. The second term in 
a pair is evaluated at the intersection of the viewing axis with the first position of the shock 
wave. The general qualitative criterion for good localization (sharply defined fringes) is that the 
terms in a pair differ significantly. To the lowest order of approximation, i. v,AO will vary 
rapidly as 1/53 varies from its value at localization if the multiplier of 1/53 is large. The  factors 
that influence this multiplier are examined one at a time. 

The  quantity k. Vg(R) is proportional to the inner product of the viewing vector k and the 
normal to the shock wave surface Vg(R)/ I Vg(R) I. The  factor 1 /k-  Vg(R) changes most rapidly 
as k- Vg(R)-0. Hence, the  two  terms in the last bracket in equation (13)  will differ most when 
the view approaches tangency. Therefore,  a steep view of a shock surface will promote 
localization. 

Conditions (b) and (c) follow fairly easily. The larger the difference between AN(R,) and 
N ( R ) ,  the larger will be  the multiplier of 1/53. Hence, a large variation in strength as a 
function of position will promote localization. (Note that  the  ratio AN(R)/AN(Rt) will enter the 
final calculation for 53 as a function of X and Y so that  the small absolute values  of AN(Rt) and 
AN(R) need be of no concern.) 

Finally, a large difference between the gradients Vg(Rt) and Vg(R) will promote 
localization. This difference is large if the  curvature of the shock surface is large. 

Requirements for Accurate  Localization 

It is desirable that  the interference fringes coincide with one of the  two positions of the shock 
wave (accurate localization). In  fact,  the conditions for  good localization (sharp fringes) will 
yield accurate localization. In addition if K, or K,, is tangential to the shock surface,  the 
locaiization will be accurate. Conditions (a) to (d) for  accurate localization are examined in the 
light of the first of equations (11). 

To manipulate  the  first of equations (11)  effectively, it is convenient to note  that 

For  condition (a), let the view be tangential: 

k-Vg(R)-O 

Then,  from  the first of equations (ll),  
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However,  from  equation (14) 

Vg(R).Kx = Vg(R)*i- k, Vg(R).k = Vg(R).i (16) 

Substituting this into  equation (15), it follows that Z = 2. Then,  from  equation (9), R = rf and a 
position on  the fringe is also a position on the  shock surface. The localization is exact. 

For condition (d) let K,. Vg(R) = 0 so that K, is tangential at  the shock surface. Then, 
from  the first of equations ( l l ) ,  

z= 

Let the strength of the  shock wave  be the same at  both positions R  and  R'. (This 
assumption will allow us to achieve  exact localization.) Then, 

z= 

From  equation (16) Vg(R)-i- k, Vg(R)-k = 0, so that 

k -  t. Vg(R) 
x - k Vg(R) 

Substituting this expression and  equation (14) into  equation (18)  yields 

Localization is exact at  the  second position of the shock wave. 

these conditions improve localization. 

negligible compared with the strength at R. Then  the first of equations (1  1)  becomes 

Conditions (b) and (c) do  not yield localization as readily. However, it can  be seen that 

For condition (b) let the strength at  R' (Rf in the  transformed coordinate system) be 
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From  equations (14) and (19) 

If the view is close to being normal to the reference plane (k, = 0), then Z = Z and localization i s  
nearly exact. 

For condition (c), let i. vg(R) be very large in comparison with i-  Vg(Rt) (the curvature is 
large in  the x,z plane). Also, let AN(Rt) = AN(R). Neglecting i s  Vg(Rt), the first of equations 
(1 1) becomes 

On substituting equation (14) into Vg(R).K, equation (21) becomes 

If the difference between Z and Z, is negligible then Z = Z, and localization is nearly exact. 
As the view approaches tangency, condition (a) promotes  both  good  and  accurate 

localization. If condition (a) is not satisfied, then  a combination of conditions (b), (c), and (d) 
will probably be required to promote localization. 

To determine quantiatively the criteria for good and  accurate localization, it is  necessary to 
treat  a specific example. The case of a shock wave between the blades of a compressor rotor is 
examined next. 

Rapid-Double-Exposure  Holography of An Interblade  Shock  Wave 
in a  Rotating  Compressor 

The results from  the previous section of this report  are applied to a shock wave generated 
by the blades of a compressor rotor. The  motion of the shock wave  between exposures is due to 
the  rotation of the compressor. However, the step-by-step application of the  fundamentals of 
fringe localization theory would be the  same for any type of shock-wave motion. 

The  equations  for locating the interference fringes are derived subject to the assumption 
that  the compressor rotates  through a small angle a between exposures. A localization error is 
defined, and  that definition of localization error is shown to be consistent with the requirements 
for accurate localization specified in the previous section. By using a polynomial representation 
of the shock surface,  the  equations derived are in a form suitable for comparison with actual 
data. 

The first step is to define an  appropriate  frame of reference. 

Reference  Frame  Relative to a  Particular  Blade  Passage 

An interblade passage will be located between the suction surface of the upper blade  and 
the pressure surface of the lower blade defining the passage as shown in figure 6.  

The origin of coordinates  in figure 6 is arbitrarily chosen at maximum span  and at the 
leading edge of the lower blade defining the passage. From this point they a x i s  is selected to be 
parallel to the axis of rotation  and  to point downstream. 
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Figure 6. - Blade  passage and  reference coorinate Figure 7. - Translation of coordinates 
system in compressor rotor. when a compressor  rotates through 

small  angle a. 

The z a x i s  is tangent to  the circumferential circle of the compressor and points in  the 
direction of  rotation.  Then,  for a right-handed  coordinate system, the x axis will point radially 
inward  toward  the a x i s  of  rotation. The next step is to define the  appropriate  transformation  of 
coordinates. 

Transformation of Coordinates at  Second  Exposure 

Between exposures, assume that  the compressor rotor  rotates  through  a small enough angle 
LY that only first-order terms in (Y need  be retained at  any stage of  the calculation. The  rotation 
tensor in equation (4) is then given  by 

where E is the identity tensor and 

The  translation vector in equation (4) can  be derived by referring to  the view in the xz plane (fig. 
7). The radius of the blades measured  from  the axis of  the  compressor is  called R,.  The 
translation vector is  given  by 

d=(O, 0, -R,LY) (25) 

Substituting equation (23) into  equation (4) results in the following coordinates at  the second 
exposure: 

Representation g(r) = 0 of the Shock  Wave 

To make  comparisons with experimental data easier, the shock wave  will  be represented by 
the  polynominal 

Note  that  the coefficients are functions of  the x coordinate only. At this point,  the  problem is 
one  of  methodical  substitution. 

Treatment of Variation in Shock  Strength N ( R )  

Define  the ratio of  the  shock strength at R to the  shock strength at R'(Rt in  transformed 
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system) by 

Now, assume that An = 1 - n is a small quantity. Retain only terms of order An at any stage of 
the calculation. To simplify the expansion to first order in An and a, equations (11) for 
localization are rearranged as shown below. Note  that  terms of order  aAn are second order  and 
are ignored. 

Expansion to First  Order in CY and An 

On expanding equations (28) to first order in CY and An, these equations can be written in 
the  form of exact-localization-plus-an-error. This expansion can be followed more easily by 
accomplishing it in several steps. 

First note  that  the first order in a, 

Substituting this into  equations (28)  yields 

Specific use has been made of the  fact that 

and similarly when K, is replaced by K,. , 

equation for K,. 
Now, in the first brackets  of  equations (29), substitute  equation (14) for K, and  a similar 
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Equations (30) are now in the form  of exact-localization-plus-an-error. However,  the 

To expand  the  denominators  of equations (30), the following relationships are used for  the 
denominator  has  not yet  been expanded. 

first of equations (30) and similar relationships for  the second: 

On substituting these relationships and performing  some  manipulation, equations (30) become 

- [k - vg(R) fi] + [k.vga [i- vg(R) - a]] i- Vg(R) 
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If the localization error is defined to be 2-Z, it can  be seen that the requirements for 
accurate localization follow immediately. The localization error vanishes  when k- Vg(R) = 0. If 
An = 0, the localization error also vanishes when K,. Vg(R) = 0. If An is large, the localization 
error vanishes for a view normal to the reference plane (k, = 0). Large values  of the  curvature 
that  appear  through  the derivatives with respect to CY reduce the localization error toward zero 
as will be apparent in the  Comparison of Localization Error Predictions section. 

The polynomial representation of the shock wave  is  now substituted. 

Localization Error Using a Polynominal  Representation of the  Shock Wave 

When equation (27) is used to represent the shock wave, equations (34) for  the localization 
error become 

[(k:+k:)-k,k,,$ + k , k z $ ] ( l - e h 0 - ~ e o ) ~  k ,  da 

2-z= 

(k:+k:)-k x k Ye0 h 2 + k , , k , L ] ( l -  e0 k h o -   Q e , > s   k ,  da 

+ 

where the evaluation of derivatives at CY=O is no longer shown explicitly and where equations 
(35) and (36) are obtained  from  equations (34) using the following definitions ana relationships. 

At the intersection of the viewing ax is  with the first position of the shock wave (position R 
in fig. 5), the  normal to the shock surface is  given by 

where 

ho =E --Ai[i*R]PR]' a 
ax 

i 

is the slope in planes parallel to the xz plane and where 



is the slope in planes parallel to  theyz  plane. Both eo and ho are  obtained  from  the  polynominal 
representation of  the  shock wave  (eq. (27)). 

At  the intersection of  the viewing axis with the  second position of the shock wave (position 
R’ in fig. 5 or R, in the  transformed  coordinate system), the  change in normal is obtained to 
first  order  from the derivative of the normal with  respect to  the  rotation angle. This derivative  is 
evaluated subject to  the constraint that  the intersection points lie on the viewing axis. The 
derivative of  the  normal is  given  by 

where h and e are  the slopes ho and eo evaluated at  the intersection of  the viewing  axis  with the 
second position of  the  shock wave and where h and e are expressed  in the  transformed 
coordinate system. The derivatives of these  slopes at a = 0 are given by 

The  quantity dZ,/da can be evaluated from g(Rt) = 0 and d/da  g(R,) = Vg(R)*dR,/da = 0 
and is  given  by 

dgr - R ,  -hoZ-i.R 
da 1 - (kx/k,)ho - (k,,/k,)eo 

- 

J R = Y +  G ( Z - 2 )  
k,  

Final Comments on Localization Equations (341, or (35) and (36) 

Three  facts  should be kept in mind in using the localization equations: (1) Although  the 
localization error  has been defined as 2 - Z, the actual error is the distance along  the viewing 
axis between the first position of  the  shock wave and  the interference fringes and is  given  by the 
vector (2  - Z)k/k,, where the viewing axis is assumed to intersect the  shock wave only  once 
during each exposure. In the limit of  tangency at a plane  shock wave, this assumption is 
violated, making this singular case harder to handle. However, if the localization error is 
redefined as the actual distance between the fringe and  the shock wave measured  along  the z 
axis, the redefined localization error is  well behaved and satisfies the previously stated 
requirements  for accurate localization. Here, it  must  be  kept in mind that  a point on  the shock 
wave  is still associated with a point on  the interference fringes via the viewing  vector k.  

In this section, exact localization is said to occur when 2 = 2. Actually, the  two positions 
of the shock wave are indistinguishable as a result of using expansions to  order a only. The 
residual error is of order d,. 

In the next section, the theory  in this section is compared with measurements  from laser 
anemometry and holography. 
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Comparison of Localization Error Predictions  with 
Holographic  and  Laser  Anemometer  Measurements 
in a  Transonic  Compressor Rotor 

Rapid-double-exposure holograms were recorded in a compressor rotor at Lewis. Earlier, 
laser anemometry had been used to measure the velocity  between the blades of the same 
compressor (ref. 1). Among those flow conditions recorded holographically were the same 
conditions that  had been mapped by anemometry. Hence, anemometer data  are used in this 
report as a basis for  a calculation of localization error. 

A previous report  (ref. 10) displays the anemometer measurements of the positions of the 
passage-shock and bow waves at the choke, or maximum-flow, condition of the compressor 
stage. At that same condition, the position of the corresponding fringe measured from  a  rapid- 
double-exposure hologram was shown for comparison. The figure from  that  report is 
reproduced herein as figure 8. However, this report  treats instead a hologram recorded near the 
stall condition of the compressor at 100 percent speed. Laser anemometer data  are available at 
that flow condition also,  and  the localization error is larger. Figure 4 shows the flow condition 
reported in this section. 

The  important  features of recording rapid-double-exposure holograms in the Lewis 
compressor are described next. 

Recording the Hologram 

Rapid-double-exposure holograms were recorded using the equipment and  setup described 

Figure 8. - Laser  anemometer and  holcgraphic data at choke. 
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under the Background section. More  than 200 holograms were recorded of flow conditions 
ranging from choke to stall and-compressor speeds ranging from 75 to 100 percent of design. 

The holograms were recorded on 105-millimeter-film coated with Kodak SO 173 
holographic emulsion. This emulsion is sensitive at a wavelength of 694 nanometers,  the 
wavelength radiated by the  ruby laser. The film was contained in and advanced by a film 
transport. A total energy of about 200 millijoules was radiated by the laser in recording a 
hologram. 

Once the compressor test section was constructed and  the holocamera was erected, only 
three  parameters could be controlled: the energy radiated by the  laser,  the time of firing of the 
laser, and  the  time between exposures. The laser was fired either at  random  or by the electronic 
shaft angle encoder mentioned in the Background section. Since at least two full blade passages 
appeared in any  hologram,  the time of firing was not particularly important subject to the 
assumptions of steady flow and  no passage-to-passage variation in flow. 

The only restriction on the  time between exposures is that it be large enough to produce a 
fringe having a gray level recognizably different from  the  background gray level. In fact, it is 
desirable that  the  time between exposures be as small as possible. Both the effect of  window 
motion  and residual localization error of order CUR, are reduced by  keeping the time separation 
small. 

For  a particular gray level, the time between exposures can be reduced by  viewing a shock 
wave closer to tangency. The,  the optical path difference between exposures is increased. 
Viewing the shock wave close to tangency also reduces the localization error  and  sharpens  the 
interference fringes. The time between exposures varied from 8 to 12 microseconds. The stall 
condition was recorded at a time between exposures of 9 microseconds. This time separation 
can be compared with a  separation between 2  and 5 microseconds used to record the holograms 
reported in reference 2. In  that  study  a more nearly tangent view was easier to achieve for some 
of the shock waves. 

When developed, the holograms were subjected to a measurement procedure. 

Measurement of the  Fringe Position in the  Reconstructed  Image 

The holograms were reconstructed using a helium-neon laser with a wavelength  of  633 
nanometers. It is prudent to be aware of three effects in performing this reconstruction: First, 
the change in wavelength from 694 nanometers (ruby laser) to 633 nanometers (HeNe laser) 
introduces magnification factors  and  aberrations. Second, the blades of the  compressor, 
relative to which the fringe position is to be measured,  appear only in silhouette. Because of 
blade motion, light reflected from  the blades does not produce a  hologram.  Third,  the flow 
field was observed through  a window having complex curvature.  The viewing window, 
therefore, produces distortion. 

The procedure for measuring the fringes in the presence of these effects follows, in part, a 
procedure in reference 2. The  actual compressor rotor (fig. 9) was erected vertically on a table. 
The reconstruction source  and hologram were set up  on the same table.  The relative positions of 
the reference source, compressor blades, and hologram had been measured in the test rig. The 
analysis of appendix B was then  applied.  The compressor disk,  hologram,  and reconstruction 
source were positioned so as to obtain approximately unity longitudinal magnification of the 
reconstructed image and superposition of that image on the compressor blades. The hologram 
was thgn reconstructed,  and  the compressor and hologram adjusted so as to superimpose the 
hologram image as closely as possible on the correct blade passages and to obtain  as nearly as 
possible unity magnification at the blade tips. The  primary component of the measurements 
was in the longitudinal direction. Hence, unity magnification in this direction was emphasized. 
As argued in appendix B, the position error in the transverse direction is consequently 5 percent 
or less. It was observed that the distortion introduced by the windows was a greater effect.  The 
effect of the wavelength change is subsequently ignored. 

To measure the position of the interference fringe, an XYZ translation table was set up 
with a pointer attached.  The pointer was an optical fiber held rigidly at one end and illuminated 
at the  other  end.  The rigidly held end appeared as a  point light source that could be placed in 
coincidence with the interference fringe. 
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Figure  9. - Compressor rotor  and setup for  measuring  the  locations of interference  fringes. 

The pointer was placed against the leading edge of the lower blade of the passage of 
interest and at the blade tip.  The  XYZ  translation  table was then tilted so that when the Z-axis 
adjustment  alone was advanced, the pointer would travel to the leading-edge tip of the upper 
blade of the passage of interest. The y axis travel was then parallel to the compressor axis, and 
the x-axis travel was in the radial direction. The distance indicators were  set at (O,O,O) at the 
leading edge tip of the lower blade of the passage of interest. This arrangement (fig. 10) agrees 
with the convention in the rest of the  paper. 

Recognizing that fringe localization is a  strong  function of viewing direction, some effort 
was made to restrict the viewing direction for  a set  of measurements. The plane of the hologram 
was nearly perpendicular to the table  on which the measurements were made. Masks, each 
containing a  horizontal slit (parallel to the table) of width approximately 1 centimeter, were 
constructed. A mask was taped to the hologram before the measurement of fringe position was 
made. There was no effect to restrict the eyes (binocular viewing) to a particular position in the 
horizontal direction. However for the best fringe localization, the hologram tended to be 
viewed from the center of the slit to the left edge of the slit. For the mask used for  the 
measurements reported in this section, the direction cosines of the viewing vectors to the center 
and left edge of the mask are listed in table 1. The viewing  axis  is assumed to extend from  the 
origin of the reference coordinate system. 

The following procedure was  used to measure a fringe. The pointer was set at a particular 
value of the radial coordinate X. For the measurements reported in this section, X=O (blade 
tip). They coordinate (parallel to the compressor axis) was then set at a value beginning at one 
end of the measurement range. This range extended from  about - 1.3 to 1.3 centimeters. After 
setting the y coordinate  and while  viewing the reconstructed image, the z coordinate  alone was 
varied until the pointer coincided with the fringe. The z coordinate was then recorded. The y 
coordinate was then stepped to a new position,  and  the  procedure repeated until the 
measurement range had been scanned. The scan was repeated at least five times for  a fringe. 
The interference fringe was not necessarily detectable or localizable at all values of y. 

Fringe Position at 100 Percent  Speed  Near  Stall 

The averaged values of the scans at the stall condition are tabulated in table 11. The same 
values are plotted in figure 10. A second-order least-mean-square-error curve fit to the averaged 
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Figure la - Shock wave near  100percent  stall meas- 
sured by laser  anemometry  together  with  corre- 
sponding fringe  from double-exposure  holography. 
Localization error E and shock position ,s corre- 
sponding  to one point on the  fringe  are shown  for 
an assumed center view. 

TABLE 1.-DIRECTION COSINES 

FOR  MEASUREMENT OF FRINGE 

POSITION 

From mask 

Center 
Left edge 

TABLE 11.-MEASURED 

POSITION OF 

INTERFERENCE 

FRINGE  NEAR 100 

PERCENT  STALL 

Y, 
cm 

2, 00 
cm cm 

0.508 

.21  1.173 .OOO 

.20 1.128 .127 

.20 1.118 .254 

.19 1.110 .381 
0.18 1.090 

-.127 1.196 .21 
-.254 1.217 .25 
-.381 1.219 

-.635 
.27 1.204 -.508 
.25 

.28 1.082 - .889 

.28 1.105 -.762 

.27 1.161 

-1.016 1.054 .29 
-1.143 1.001 .27 
- 1.270 .970 .27 

data is also plotted in figure 10. The maximum standard deviation of  the measurements occurs 
at Y =  - 1.02 centimeters and is  given  by a=0.28 centimeter. Also shown in figure 10 is the 
position of  the shock wave measured by laser anemometry. 

The shock wave for Y<O is called the bow  wave and  the shock wave for Y>O is called the 
passage shock wave. 

Assuming that  anemometry yields the correct position of  the  shock wave, the localization 
error is clearly substantial. Using the anemometer data as a reference, the calculated and 
measured localization errors  are now compared. 
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Measured  Localization Error 

First recall the definitions. Referring to figure 10, a point on the interference fringe is 
designated by the  coordinate pair (Y,Z) .  From  that point on  the interference fringe,  the 
projection of the viewing axis in  the yz plane is followed back to where it intersects the shock 
wave (assumed to be given  by the laser anemometer data).  For one point on the  fringe,  the 
projection of the viewing axis to the center of the mask is shown in figure 10 by the solid line, 
and  the projection to the  left edge of the masked is shown by the  broken line. 

The  coordinates of the  point of intersection of the viewing axis and  the shock wave are 
designated by the  coordinate pair [Y+ ky /kz (Z-  Z), Z ] .  Hence, the  point on the shock wave 
having this coordinate pair “causes” the interference fringe at  the point (Y,Z) .  

The localization error is a vector having a magnitude equal to the length of the line segment 
connecting the  points on the shock wave and  the fringe. The  component of this vector in the z 
direction is 2 - Z ,  and  the component in the y direction is ky/kz(Z -2). Since these two 
components  are  both  proportional to E =  2-2, only that  component will be measured and 
called the “localization error.” 

Table I11 lists the measured localization error E =  2 - Z and  the y coordinate of 
intersection of the viewing axis with the shock wave  given  by 

s= Y+ J ( Z - 2 )  
kZ 
k 

as functions of they coordinate of the intersection of the viewing axis with the fringe designated 
by Y. This  tabulation is done  for ky /kz  corresponding to the center of the mask and ky/kz  
corresponding to the left edge of the mask. The measured localization error E is plotted also as 
a  function of S in figure 11. 

For  comparison with the localization theory,  the localization error is calculated next. 

Calculated  Localization Error 

For this calculation of the localization error, it is assumed that all derivatives in the X 

direction can  be neglected. Then  equation (36) is employed with ho = 0 and dh/da = 0. It is also 
assumed that  the  variation in shock-wave strength with position can be neglected so that An = 0. 
Finally, a polynominal representation to fifth  order of the  anemometer measurement of the 
shock wave  is used: 

5 
z= Aisi 

i = O  

The coefficients of this expression are listed in table IV. 

TABLE 111.-MEASURED  LOCALIZATION  ERROR  FOR 

TWO  VIEWING  VECTORS 

Y, 
cm 

- 1.27 
- 1.016 
- .762 
- .508 
- .254 
0 

.254 
SO8 

(a) Center 

S, 
cm 

-0.58 
- .38 
- .20 
0 
.23 
.41 
.58 
.79 

E, 
cm 

1.59 
1.45 
1.32 
1.17 
1.02 
.94 
.79 
.64 

Y, 
cm 

- 1.27 
- 1.016 
- .762 
- .508 
- .254 
0 

.254 
SO8 

(b) Left  edge 
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- Calculated error 

Calculated error 
center-of-mask view 

left-edge-of-mask  view 
A Measured  error assumed 

center-of-mask view 
0 Measured  error assumed 

left-edge-of-mask  view IN POLYNOMINAL 

"_" 

TABLE  1V.-COEFFICIENTS 

loo - REPRESENTATION OF SHOCK 
WAVE DETERMINED BY 

LASER  ANEMOMETRY i 
5.0 

2 5 -  
0) 

- .476 cm" 
I I I I I I  .01074 cm-2 

'44 .lo51 ~ 1 3 1 ~ ~  
.04418 ~ r n - ~  

s=&(z-z), cm 
kz 

Figure 11. - Measured  and calculated localization error  
E as  function of S . 

When this polynomial is substituted into  equation (36) subject to the  assumptions,  the 
localization error is  given by 

where, because of the large value of R, ,  equation (40) is written approximately as 

Also, note  that  equation (37) becomes 

5 

i =  1 
eo = iAiSi-' 

The various factors  that determine the localization error together with the localization 
error  and  the  coordinate Yon the interference fringe are listed as  functions of S for  a viewing 
vector to the center of the mask in table V. The same quantities  are listed in table VI for  the 
viewing vector to the left edge of the mask. 

For the two viewing vectors, the localization error is plotted as a  function of Sin figure 1 1 ,  
which also shows the measured localization error. 

Discussion of Results 

Referring to figure 11, the agreement between experiment and  theory is seen to be  good 
quantitatively and qualitatively. Tables V and VI show clearly what factors influence 
localization in this application. 
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Position 
on shock, 

S, 
cm 

- 1.27 
- 1.02 
- .762 
- .508 
- .254 
0 

.254 
SO8 

First consider figure 11. Depending on the viewing vector, the fringe corresponds to  that 
part of the shock wave extending in they direction from  about S= -0.5 to 0.9 centimeter. The 
agreement between the measured and calculated localization errors is particularly good if it is 
recalled from appendix A that  the fringe is sharpest when the localization error is a minimum. 
Hence, the eye ought to be attracted to the view that minimizes the localization error.  The 
fringe formed by the bow wave ( S c O )  is sharpest and most easily located when  viewed toward 
the left edge of  the  mask,  and  the fringe formed by the pasage shock wave (S>O) is sharpest and 
most easily located when viewed toward  the center of the mask or  to the right of center. Hence, 
the broken curve probably represents the localization error when S<O, and  the solid curve 
probably represents the localization error when D O .  If that is true,  then  the circles represent 
the measurements when ScO, and  the triangles represent the measurements when S>O. 

It is notable that  the fringe corresponding to the bow wave becomes unlocalizable where 
the calculated localization error  starts to increase rapidly. (For the left view, about S= - 0.4 cm 
corresponding to Y= - 1.3 cm on  the fringe.) 

It is also notable  that  a singularity in the calculation for  the localization error occurs at 
about S=O.6 centimeter. In equation (42) the singularity occurs when the effect of curvature 

and the effect of rotation 

just cancel. 
The calculated location of this singularity is subject to considerable uncertainty for several 

reasons. The  calculation depends on the second derivative of the laser anemometer data,  and 
those data  are less accurate in this region. The  quantities  that were  neglected in performing the 
calculation of localization error (derivatives with respect to x and  the variation of shock 
strength) may have a significant effect on  the  location of the singularity. Therefore,  the  fact 
that the interference fringe disappears about 0.3 centimeter closer to the blade than the 
calculation indicates is not considered to be significant. 

TABLE  V.-CALCULATED  LOCALIZATION  FACTORS FOR  VIEW DEFINED BY CENTER  OF MASK 

AND ORIGIN OF REFERENCE  FRAME 

1.29 
1.13 
.988 
.829 
.643 
.436 
.234 
.0827 

7 '  
k vg 

kY 
kz 

1- " e o  

1.78 
1.70 
1.63 
1.56 
1.46 
1.36 
1.26 
1.19 

3 x curvature, 

0.350 
.276 
.285 
.334 
.388 
.409 
.361 
.206 

Effect of rotation, 
~~ 

Rc 
cm" 

0.0669 
.0575 
.0496 
.0417 
.0326 
.0236 
.0158 
.0107 

Position 
on fringe, 

Y, 
cm 

- 4.78 
- 4.80 
-3.71 
- 2.67 
- 1.39 
- .663 
- .114 
- .290 

Localization 
error, 

E, 
cm 

8.13 
8.79 
6.83 
4.42 
2.64 
1.54 
.E53 
SO5 
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TABLE  VI.-CALCULATED  LOCALIZATION  FACTORS FOR  VIEW DEFINED BY  LEFT EDGE OF MASK 

AND ORIGIN  OF  REFERENCE  FRAME 

Position 
on shock, 

S, 
cm 

- 1.27 
- 1.02 
- .762 
- .508 
- .254 
0 

.254 
SO8 

0.990 
.854 
.732 
.594 
.434 
.254 
.0788 

-.0518 

-I 
k. vg 
kz 
kY 1 -  -eo 
kz 

2.18 
2.06 
1.95 
1.84 
1.70 
1.54 
1.39 
1.28 

3 X curvature, 

cm" 

0.528 
.417 
.429 
.504 
.587 
.618 
.543 
.309 

Effect of rotation, 

RC 

cm" 

0.0689 
.0594 
.0512 
.0429 
.0337 
.0244 
.0163 
.0110 

Position 
on fringe, 

Y, 
cm 

-4.32 
- 4.22 
- 3.22 
-2.05 
-1.12 

.119 

.653 

- .427 

Localization 
error, 

E, 
cm 

4.70 
4.93 
3.78 
2.37 
1.33 
0.658 

.208 
- .222 
- 

From tables V and VI, it can be  seen that the localization error is kept small as it is  by a 
combination of enough curvature  and  a sufficiently small value of the inner product 

(The term kxk,,ho has been added back in for reference.) 
Incidentally, the superior agreement between the holographic data  and the laser 

anemometer data shown in the blade passage for choke flow (fig. 8) can be attributed to a 
combination of larger values  of curvature  and smaller values of K,, - Vg(R) that  are calculated 
for this flow condition. 

Conclusions and  Recommendations 
The  theory of fringe localization developed in this report was supported by the holographic 

and  the laser anemometer measurements obtained in the single-stage compressor rig at the 
Lewis  Research Center.  The theory shows that there will  be a localization error and that it may 
be large. The presence and value of the  error will depend on the  curvature of the shock wave, its 
variation in strength,  and its orientation relative to the viewing direction,  The only factor  that 
can be controlled to some extent is the viewing direction. If there is some curvature, the 
localization error can probably be kept small by restricting the view to within plus or minus 30" 
of tangency to the shock surface. When the view  is restricted so that this degree  of  tangency 
cannot be achieved, other optical methods of measurement should be considered before rapid- 
double-exposure holography is attempted. 

In any case one may be confronted with fluctuating flows that  are not two dimensional or 
must be examined through windows of low quality or complex curvature.  Then, rapid-double- 
exposure holography is worth trying. 

The reasonable way to handle localization error is to avoid it. Using a number of views  in 
an attempt to invert the localization equations seem  like a formidable  and not very accurate 
procedure,  although this possibility has not been examined in any detail. 

The first step in avoiding localization error is to ascertain the available range of the viewing 
vectors and to estimate the expected range of shapes and  orientations of the shock wave. The 
next step  for each orientation of the shock wave  is to determine whether there is a viewing  axis 
where the view is close to being tangent to the shock surface. Then the chance for good and 
accurate localization is excellent. Even if the fringes do not localize accurately for all views, the 
fact  that  sharp fringes and accurate localization go together should guide the eye  in  picking out 
the best location of the fringe. An additional benefit is that  the time between exposures required 
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to achieve an  adequate  gray level  will also be minimized, thereby minimizing the residual 
localization error. 

If  localization is not  found to be established by the range of  views,  it can only be hoped 
that  the shock wave has very strong  curvature or a large positional variation in strength or is 
rotated sharply about  an axis near the point of interest. Then  the localization error may be 
acceptably small even though  the view  is not an  optimum view. 

Lewis Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, May 1, 1981 
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Appendix  A 
Theory of Double-Exposure  Holography for  Diffuse Illumination 

of a Time  Varying Phase Object 
With minor  modifications, this theory is based on  a  treatment by  Vest (ref. 8, p. 284-295). 

Some assumptions will be examined a bit more carefully than in reference 8. 
The region of interest is located between a diffuser and  a  photographic plate or film on 

which the hologram is recorded (see fig. 12). That region (for this analysis) contains objects that 
change only the phase of the light passing through them. The objects will include lenses and 
windows as well as a  fluid whose density field is changing in time. 

In the region of interest, a plane to be called the reference plane is selected. However, 
unlike in Vest’s treatment, it will be convenient to refer to a reference plane other  than  the plane 
of the system diffuser. It will be shown that  no complications result if it is assumed that only 
one ray from  any  point  on  the diffuser passes through  a point on  the reference plane. A 
coordinate system is erected with its origin and x,y axes in the reference plane. The z axis is then 
perpendicular to the reference plane. 

Now, it  is convenient to follow a generally curved light ray  from  the diffuser through the 
arbitrary phase object to a point rr =(x,y,O) on the reference plane. As stated  above, it is 
assumed that only one light ray  from each diffuser point passes through rr .  The ray designated 
by the symbol S in figure 12 is then continued to an arbitrary point whose coordinates are 
designated by rf=(X, Y,Z). Finally, the ray passes through  the plane containing the 
photographic film and is incident on the aperture of an imaging system. That system could be 
the eye, a film camera, or a television camera,  for example. The reconstructed image and  actual 
phase object will  be treated as identical. Thus, there is no distinction between rays that actually 
pass through the region of interest and rays that  are reconstructed in the virtual image of the 
hologram. The complication of recording and reconstructing the hologram with different 
wavelengths is treated in appendix B. In figure 12 several curved rays are shown passing 
through rf before they are intercepted by the imaging system. No more than one ray per 
diffuser point is shown passing through  a point on  the reference plane. Subject to this 
contraint, the reference plane is quite arbitrary. 

Because the rays are generally curved, there is no guarantee  that the point rf can be imaged 
by the lens. In fact, in the most general case, all that can be said is that the rays satisfy the 
equation 

where s is the distance along a ray path, where r is the position of a point on  a ray path, and 
where n is the refractive index at position r. A solution of this equation requires knowing the 
refractive index n as a  function of r. However, the flow visualization methods designed to 
measure n(r) require knowing the ray paths. For a discussion of this generally intractable 
problem relevant to Mach-Zehnder interferometry, refer to the  fundamental reference by 
Howes and Buchele (ref. 11) .  

The only practical approach is to assume simplified functional  forms  for the ray paths.  The 
assumption in this paper is that  the rays are straight lines in the region between the reference 
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plane and  the  hologram.  This so-called "refractionless limit" can be compromised by anyone 
of the following effects: 

(a) The windows,  which may refract  the rays 
(b) Gradients of refractive index in the fluid, which also may refract  the rays, introducing 

distortion 
(c) Gradients of refractive index, which may cause rays to appear to intersect, or  to 

intersect, at rf when the intersection would not have occurred in the refractionless limit. 
These effects are neglected in the following analysis. The imaging of the rays through rf is 
shown schematically in figure 13 for the holocamera configuration  of figure 2. 

The electromagnetic field at the image point shown in figure 13 is treated as a summation 
of scalar expressions having the  form 

U(rf;rr)  =A(rf;rr)ejP('f;'') 

In equation (A2), the vector pair (rf;rr) defines a particular ray S and, as assumed above, a 
unique point on the  diffuser. 

The  factor A(r$rr) represents the magnitude associated with a  ray rf-r,.. The  factor 
dP('firr) represents the  total phase of this ray accumulated in passing from  the diffuser to the 
aperture of the imaging system. The  magnitude A contains  any  radiometric angle factors. 

The  total field at the image point when the imaging system is focused on rf is  given by 

The integral is evaluated over that  part of the reference plane subtended by the limiting aperture 
of the imaging system. 

It is convenient to represent the phase cp by a  sum of phases 

These phases are defined by the listing below: 
cpDI phase of the laser illumination incident on the  diffuser. 
9 D R  random  component of phase imparted by the  diffuser 
cpo phase contributed by any optical components  and windows located in the 

region of interest. 
e phase contributed by fluid with a time varying density distribution. 
'PF phase contributed by fluid with a density distribution  that does not change 

with time. 
Substituting these phases in equation (A3), the field at the image point is  given by 

The usual assumption is that A varies slowly as  a  function of rr . In  fact, this assumption is 
invalid when observations are  made within an order of magnitude of the resolution limit 

Figure 13. - Imaging of rays passing through (X,Y,Z) 

when  illuminated by holccamera  configuration of 
figure 2 
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determined by the limiting aperture of the combined hologram recording and reconstruction 
systems. Then the laser speckle effect (ref. 12) leads to a rapid  variation in A .  However, the 
periods of the interference fringes important in rapid-double-exposure holography are large 
when compared with the resolution limit. Only the low-frequency spatial  modulation of the 
average intensity (A2)  is important. This long period average is approximately constant.  For 
convenience, let A = 1 subject to this understanding. The field is now given  by the  equation 

In rapid-double-exposure holography, a second hologram is recorded after  the fluid has 
changed slightly. In the refractionless limit,  the rays are geometrically unchanged,  and  the field 
is given  by 

where the primes denote  the second exposure. Note  that only 8 has  changed, where 8 represents 
that  part of the fluid that changes between exposures. 

In the reconstructed waves from the double  exposure,  the intensity at the image point of rf 
is  given  by 

I(rf) = 1 ~ 1 2  + IU' 12 + U*U' + UU' * (A81 

Substituting equations (A6) and (A7) into  equation (A8), the intensity is given by 

where rr and r; are now simply dummy variables of integration.  In  equation (A9), only the 
cross-interference term has been shown explicitly. Note that  the  contribution of (oDR(rf; 
r;) - pDR(rf;  r,) to the argument of the cosine in equation (A9) varies rapidly with the variable 
Ar, = r; - rr. Since this rapidly and randomly varying phase, which leads to the speckle effect, 
is of no  further interest and since the details of its variation would change from  one diffuser 
sample to another in any case, the phase factors 

are ensemble averaged. For a diffuser this average is an extremely narrow function of Ar, and 
has a minimum width of the order of a wavelength of light. After a change of variables 

Arr =r; - r r  and rr =rr  

the integrand is decomposed into  factors  that vary rapidly with Arr and  factors  that vary slowly 
with Arr. The variable Ar, is equated to zero in the slowly varying factors. These factors  are 
then removed from  the integral that depends on Ar,. It can be shown that this integral is now 
the same proportionality  factor in all terms of equation (A9) and  the integral is dropped  from 
further discussion. Equation (A9) becomes 
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wherep is the  area  on  the reference plane  subtended by the  aperture of the viewing  system. Note 
that proportionality constants are  not  shown explicitly in equation (A10) or in the  remainder of 
this paper. 

The  only  phase that  appears in equation (A10)  is the  change in phase associated with the 
time  varying  field as it appears  at  the  two exposures. Define 

Equation (A10)  is in precisely the  form required for Vest's treatment of fringe localization (ref. 
8). However,  the vector 

rr = (X, Y,O) 

refers to  an  arbitrary plane of reference. The salient features of  the theory of fringe localization 
are stated as follows: 

(a) An interference pattern  appears to be located (localized)  where its visibility  is a 
maximum.  The visibility  is defined to be 

where I,, and Imin are  the  maximum  and  minimum intensities on  the surface where the 
pattern is measured. 

(b) If a viewing direction is established by the vector rf - r r ,  then rf will define a point of 
localization if the rays  in the  cone whose axis is along  the viewing direction and whose apex is 
defined by ry sum to maximize 

The base of  the  cone is the projection of the viewing aperture  in  the reference plane. 
(c) The cross interference term 

will be a  maximum at those points where AO is essentially a constant over the pencil  of rays 
defined in (b); that is, A0 must be stationary with  respect to r r .  It is  assumed that  the 
components  of rr can be varied independently: the viewing aperture  should be approximately 
symmetrical. 

From (a), (b), and (c), the localization condition is defined by 

V,AB = 0 (A1  1) 

where 
a a  
ax ay 

V, sf- + j- 
It is important  to realize that  equation (A1  1) refers to a particular viewing direction relative 

to the reference plane. Given a point rr in the reference plane and a viewing direction defined by 
the unit vector 

k = k,i+ k,j+ k,k 

it is true  that 

kx(rf-r,)=O (A121 

By convention, the unit vector k will point to  the center of the viewing aperture. 
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The set of points defined by equations (All)  and (A12) is  always defined subject to  the 
constraint that k is fixed. The region of interest is scanned with an imaging system  whose axis 
maintains  a fixed direction relative to  the reference plane. The localization set is defined for 
that direction k. If k is changed, a new  set of localization points will  be defined that may be 
quite different from  the previous set. 

For  the  particular viewing direction k, the set of points rf satisfying equations (All)  and 
(A12) will fall,  in general, on a curved line. In some practical cases the phase  change will depend 
only weakly or  not  at all on  one  of  the  two  components  of r,. Then  only one component  of 
equation (All)  will  yield an equation for r p  Then,  the localization set will fall on a surface 
rather  than  on  a curved line. 

Even  when localization is confined to a curved line, fringes will be recognized over  a 
nonzero  volume of the region of interest. The  reason is that a finite viewing aperture will have a 
nonzero depth-of-field for viewing fringes. Reference 8 presents a detailed discussion of this 
phenomenon. Briefly, in the  notation  of this paper and specifically for phase objects, fringe 
visibility away from  the  optimum points of localization will vary  according to 

V= sin(i. v,A8 6,) s i n v  V,A8 6,) 
i. V,A8 6,j. V,A8 6, 

Here, 6, and 6, are half the  widths  of the projection of the viewing aperture  cone  on  the 
reference plane. A very conservative criterion is that  the fringe visibility must decline to zero 
before  a  change  in fringe visibility  will  be detected. Using this criterion, fringe visibility  will 
remain  apparently  unchanged  provided  that 

" 

lr a 
Ci. V,A8< - 

6, 6, 

" 

lr a 
Cj. V,A8 < - 

6, 6, 

If desired, any criterion based on  an  arbitrary reduction in fringe visibility can be  used to 
replace equation (A14). The  quantitative effect of finite depth-of-field is ignored elsewhere in 
this paper;  however,  the effect is referred to qualitatively from  time to time. 

We may  now  derive the localization conditions for a time varying refractive index field. Let 
the  change in refractive index  field  between the first and second  exposures be denoted byflr). 
The  phase  change is  given  by the line integral 

Here, s is the distance along  the  ray defined by  (r,; k). The vector r is a function  of  the vector rr 
and  the distance s. The  convention will be to measure distance from  the reference plane so that 

r=r ,  +sk 

The  symbol X represents the vacuum  wavelength of  the light used. Substituting equation (A15) 
into  equation (A1 l), localization is  given  by the  equation 
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From  equation (A16), it follows that 

When equation (A18) is substituted into  equation (A17), the localization criterion is  given 
by 

sV,r;Vfdsf s V,k.vfsds=O (A191 

Because distance is measured  from  the reference plane and because f(r) is nonzero over a 
finite region only, equation (A19) can be written conveniently as 

V,r,.Vf - +I V,k-Vf =o  
03 dz 0 z dz 
"OD k, - w  kz 

Using equation (A12) and  the  fact  that k is a unit vector, the six components  of V,k can  be 
evaluated. The  components  are given  by 

For convenience, define the vectors 

K ,  = [ - kxky,  k,+ k i  , - k,k,] (A231 

When equation (A21) is substituted into  equation (A20) and  the definitions from equations 
(A22) and (A23) are used  (eq. (l)), the condition for localization that  appears in the text, is 
obtained,  namely, 

z=  z= 
jm i-Vf dz jw J -  vf dz 

"OD --OD 

To conclude this appendix,  the  proper use of equations (1) is summarized. 
(a) In  the region where the refractionless limit applies, choose a convenient reference plane 
(b) Erect a coordinate system with its x,y axes in this  plane 
(c) Represent  the change in refractive index distribution between exposures by a function 

(d) Evaluate the gradient of this function VAr) 
fo 
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(e)  Recall that r is confined to a ray having a direction k and passing through  the point 
rf = (X, Y,Z). Hence, substitute 

into the gradient. 

Steps (a) to ( f )  will yield, in general, two equations for 2 as a function of X and Y. Be aware 
that  one of the two equations may not exist  except in a trivial sense. 

( f )  Substitute the parameterized expression for  Vfinto equation (1) and integrate. 
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Appendix B 

Effect of Wavelength  Changes on Fringe Localization 
In rapid-double-exposure  holography, a hologram is recorded with a pulsed  laser and 

reconstructed with a continuous wave laser. In general, the wavelengths of  the lasers used for 
recording and reconstruction will  be different. In the case of a ruby,  helium-neon  combination 

A H ~ - N ~  - 6328 A cc= ~ = 0.91 1 
h u b y  6943 A 

and in the case of a frequency-doubled Nd:YAG, argon-ion  combination 

cc= 
Aion - 5145 A 

ANCI:YAG 5320 A 
-___ = 0.967 

As shown in this appendix, this change in wavelength can be treated as an imaging defect, and 
has  no other effect on fringe localization. 

From  equation (A4) in appendix A, the  phase of  each ray at  the  photographic plate can be 
expressed by 

CPW, Z,XJ,O) = pi + e (B1) 
I 

where the  phases p i  are  the  time invariant phases  found in equation (A41 and where the Phase e 
is the phase associated with the  time varying fluid.  For a second exposure  the  phase Of the Same 
ray is  given by 

The ray in equations (Bl) and (B2) intersects the  photographic plate at some point. Call the 
phase of the reference beam at  that  point, (or and  the  phase of the reconstruction beam at  the 
same  point, pc. The analysis of Meier (ref. 13) is  used  in this discussion. 

The  phases of the reconstructed rays are given  by 

The  phase difference pc - pr along with C Q ~  is a constant between exposures  and has no effect 

on fringe formation.  However, when pc - p r  #O, the ray will be deviated at  the hologram. This 
deviation is an imaging defect and can be grouped with similar defects in the remaining imaging 
system. The analysis is developed  in the following paragraphs. 

Recall from appendix A that localization requires that a pencil of rays passing through  any 
point in the region of interest be collected and refracted to a point  image by an imaging  system. 
The following defects are possible in any imaging system, including a hologram where 

i 

Qc-Qr $0 
(a) There  may  be a scale transformation between the  object  and  the  image 
(b) The scale factors  may  vary  as a function  of direction 
(c) The scale factors  may  vary as a function  of position (distortion) 
(d) A point  image  may  not  be  formed even though  diffraction effects are ignored. 

Effects (c) and (d) are  aberrations  and will occur, in general, when different wavelengths are 
used to record and  to reconstruct holograms.  From Meier, phases like Q + pC -(Or can be 
expanded in powers of 1/23 where 23 represents distance(s) from  the hologram. m e  
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contributions  from terms of order l/Slead  to effects (a) and (b), while terms of order l/S3 lead 
to aberrations. 

The  aberrations  must be negligible for double-exposure holography to be useful. Hence, 
the hologram aberrations are neglected along with the  aberrations introduced by the  other 
optical components. 

To show that  the scale transformations simply scale the line or surface of fringe 
localization, let the scale transformation be defined by 

Different scale factors  are assumed for the different axes. Recall that  the general conditions for 
fringe localization are given  by equations (All). For  any  function F(X,Y,Z,x,y,O) the scale 
transformation is performed by replacing F with 

Hence, AO(X, Y,Z;x,y,O) is replaced by 

The same localization criteria apply to the scaled reconstructed image, that is, 

From equations (B6), it  is also true  that 

However, on substituting equations (B5) into  equations (B7), equations (All) are  obtained. 
Hence, (X ,   Y ,Z)  is a point of localization in the unscaled image if and only if (X’,  Y’ ,2  ’ ,) is a 
point of localization in the scaled image. 

Scaling deforms the fringe according to the scale factors a,  b, and c. The direction cosines 
of a ray are also altered.  For example, if 

kx = 
x - x  

J[(X-X)2 + (Y-y)2 + 223  

then 

k ‘ =  x - x  
./[(X-xI2  +(b/a)2(Y-y)2 + ( ~ / a ) ~ 2 ~ ]  

X ~~ . . 

so that 

kx # k; 
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In general, it will be possible to select a position for  the reconstruction source so that  the 
scale transformation is cancelled in one plane. Even though a = b = 1, it will be true  that c # 1. 
Cancellation of all three scale transformations wiIl be impossible when p # 1. 

Cancellation of the scale transformations can be summarized adequately in the paraxial 
approximation (ref. 13). For  a z-axis perpendicular to the  hologram, the transverse 
magnification (magnification perpendicular to the z-axis) is given  by the  equation 

1 
M y =  

where the symbol M y  refers to the transverse mangification of the  virtual image, where zo is the 
axial distance of an object point from  the  hologram, where ZR is the axial distance of  the 
reference source from the hologram,  and where zc is the axial distance of the reconstruction 
source from  the  hologram. 

Clearly, M y =  1 if zc = z R / ~ .  On  the  other  hand,  the longitudinal magnification 
(magnification along the z-axis) is  given  by ML = M F / p .  When MV = 1, ML = 1/p .  Hence, 
there will  be a longitudinal extension of the virtual image when p # 1 even  when the transverse 
magnification is unity. 

In the paraxial approximation,  the angular magnification is  given  by M A  = p regardless of 
the choices for MV and M L  . 

To summarize, points of localization are  transformed by the combined recording and 
reconstruction processes in the same way that  other  object  points  are  transformed. As with 
other object points,  the integrity of the fringe may be destroyed by aberrations.  The 
magnification when p # 1 cannot be  cancelled  in all directions. If measurements of fringe 
position are to be made relative to a particular direction, magnification can be equated to unity 
in that direction. For a  ruby, helium-neon combination, suppose that  the longitundinal 
magnification is equated to unity.  Then  the  transverse  magnification is  given  by 
M V  = p=O.954. Hence, for this combination the maximum error  due to the change in 
wavelength will be less than 5 percent of the maximum dimension measured. 
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Appendix C 

Symbols 

n 

An 

P 
R 

R' 

r 

'f 

rr 

f t  
S 

magnitude of electromagnetic field 
coefficients in polynominal representation of shock wave 
number having arbitrary size in representation of shock wave 
scale factors (appendix B) 
translation vector 
localization error 
unit tensor 
slope of shock wave at first exposure in planes parallel to yz-plane (eq. (37)) 
function 
field of refractive index change 
function representing shock wave surface 
slope of shock wave at first exposure in planes parallel to xz-plane (eq. (37)) 

de/da variation with rotor angle (Y of slope of shock wave at second exposure 
(eqs. (38) and (39)) 

intensity 
summation index 
unit vectors defining Cartesian axes 
[$ + ki, - kxkY, - k&z] 

unit vector establishing viewing direction, [kx,kY,kz] 
angular magnification 
longitudinal magnification 
transverse magnification of virtual image 
refractive index function for shock wave 
change in refractive index across shock wave 
ratio of shock strengths €or two exposures n = [An(R)/An(Rt)], also used for 

1 - n  
area of projection of viewing aperture on reference plane 
position in reference frame at which  viewing axis crosses shock wave at first 

position in reference frame at which  viewing  axis  crosses shock wave at second 

tip  radius of compressor rotor 
position in transformed  frame at which  viewing axis crosses shock wave at 

position vector in reference frame,  =(x,y,z) 
position vector at point on interference fringe (localization point) in reference 

position vector of point in reference plane 
position vector in transformed system 
used for j .R in main text; designates generally curved ray in appendix A; 

[-k,k,, k;+k,2,-kYkzl 

refractive index (appendix A) 

exposure 

exposure 

second exposure 

frame, =(X,  Y,Z) 

designates distance from hologram in appendix B 
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U 

(P 

(PC 

(PDI 

(PDR 

(OF 
(PO 

(Or 
61 
V 

- 

Vr 
vt 

distance along a light ray 
denotes electromagnetic field associated with light ray at first exposure 
denotes electromagnetic field associated with light ray at second exposure 
fringe visibility 
Cartesian coordinates of point on interference fringe (point of localization) 
Cartesian coordinates in reference frame 
Cartesian coordinates in transformed  coordinate system 
axial coordinate in reference frame at which  viewing a x i s  crosses shock wave at 

axial coordinate in reference frame  at which  viewing  axis  crosses shock wave at 

axial distance of reconstruction source from hologram (appendix B) 
axial distance of object point from hologram (appendix B) 
axial distance of reference source from hologram (appendix B) 
angular  rotation of compressor rotor between exposures 
Cartesian tensor of direction cosines 
half widths of projection of viewing aperture on reference plane 
phase of time varying fluid at first exposure 
phase of time varying fluid at second exposure 
vacuum wavelength of light 
ratio of wavelength during reconstruction to wavelength during recording of 

standard deviation 
phase 
phase of reconstruction beam at hologram 
phase of laser illumination incident on diffuser 
phase imparted by diffuser 
phase contributed by time invariant fluid 
phase contributed by optical components  and windows 
phase of reference beam at hologram , 

tensor, - f k  + fif (dyadic notation ) 
vector differential operator i wax+; Way + k a/az 
vector differential operator in reference plane only i a /ax+ j  Way 
vector  differential  operator  in  transformed  coordinate  system 

implies differentiation with respect to Cartesian coordinates followed by 

implies differentiation with respect to transformed  coordinates followed by 

first exposure 

second exposure 

hologram 

f a/aX, + j  a/aYt + k a/aZ, 

substitution of R 

substitution of Rt 
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